2014 (5th Semester) ### **PHYSICS** EIGHTH (A) PAPER (Spectroscopy) Full Marks: 55 Time: 2 hours (PART : B-DESCRIPTIVE) (Marks: 35) The figures in the margin indicate full marks for the questions 1. Derive Rutherford's scattering cross-section formula. Discuss Rutherford's atom model and mention its limitations. 4+3=7 Or - (a) Explain the different spectroscopic terms. Also explain multiplicity of the terms. - (b) Calculate the two possible orientations of spin vector \vec{s} with respect to magnetic field direction. G15-250/136a (Turn Over) 3 Distinguish between normal and anomalous Zeeman effects. Use classical ideas to explain normal Zeeman effect. Or What are X-rays? Explain Bragg's law. X-rays of wavelength 1.392 Å are reflected from the face of an NaCl crystal. The first-order reflection is observed at an angle of 14°. Calculate the lattice spacing. 2+3+2=7 3. Define spontaneous emission and induced emission, and hence derive Einstein's A and B coefficients. 3+4=7 Or Explain the construction and working of He-Ne laser. 4. Obtain an expression for the allowed energies for a vibrating diatomic molecule treated as a harmonic oscillator. Show that the vibrational spectrum consists of a single band. 4+3=7 Or (a) Obtain an expression for the rotational energy of a diatomic molecule when considered as a rigid rotator. Explain the isotope effect. 3+2=5 G15-250/136a | (h) | The transition $J = 1 \leftarrow 0$ in HCl occurs at | | | | | | |-----|--|--|--|--|--|--| | (~) | 20.68 cm ⁻¹ . Regarding the molecule to | | | | | | | | | | | | | | | | be a rigid rotator, calculate the wavelength | | | | | | | | of the transition $J = 15 \leftarrow 14$. | | | | | | 2 5. What is Raman effect? Explain it using quantum mechanics. Also compare Raman spectra with infrared spectra. 1+4+2=7 Or - (a) Discuss rotational fine structure of electronic vibrational transitions. - (b) State and explain Franck-Condon principle. 2 *** #### 2014 (5th Semester) #### **PHYSICS** EIGHTH (A) PAPER (Spectroscopy) (PART : A-OBJECTIVE) (Marks: 20) The figures in the margin indicate full marks for the questions SECTION—I (Marks: 5) Put a Tick (✓) mark against the correct answer in the brackets provided: 1×5=5 1. The possible quantum numbers n, l, j and m_j of the outer electron of sodium given by $3^2S_{1/2}$ are (a) $$n=2$$, $l=1$, $j=\pm \frac{1}{2}$, $m_j=\pm \frac{1}{2}$ () (b) $$n = 3$$, $l = 0$, $j = \frac{1}{2}$, $m_j = \pm \frac{1}{2}$ () (c) $$n=1, l=2, j=\frac{3}{2}, m_j=\pm\frac{3}{2}$$ () (d) $$n = 0$$, $l = 3$, $j = \frac{3}{2}$, $m_j = \pm \frac{3}{2}$ () | | According to Pauli's exclusion princinumber of states with a given princinumber | ple, i
ipal (| he
qua | total
ntum | |--|---|------------------|-----------|---------------| | | number n is | | | 8 | (a) $$2n^2$$ () (c) $$2n^2+1$$ () (d) $$2n+1$$ () 3. An atom initially in the upper energy state E_2 drops to a lower state E_1 by emitting a photon of energy hv. The process is known as | 4. | the
elec | molecu
ctronic (| ılar
(E _e), | energy
vibrati | leve
onal | nheimer els can (E_{v}) an magnitu | d rotat | lucu | 11100 | |----|-------------|---------------------|----------------------------|-------------------|--------------|--------------------------------------|---------|------|-------| | | (a) | $E_e > E_t$ | , > E | r | (|) | | | | | | (b) | $E_{v} > E_{e}$ | ,
e > E | r | (|) | | | | | (c) | $E_r > E_v > E_e$ | (|) | |-----|-------------------|---|---| (d) $$E_r > E_e > E_v$$ () 5. If one electron is removed from oxygen molecule, it will be in the highest energy orbital $(\pi_g^* 2p)$. This electron is called | (a) | anti-bonding electron | | (| |) | | |-----|-------------------------|---|---|---|---|--| | (b) | bonding electron | (| |) | | | | (c) | π -bonding electron | | (| |) | | SECTION-II (Marks: 15) Give short answers of the following questions: $3 \times 5 = 15$ 1. State and explain Larmor's theorem. 2. Write a short note on Auger effect. 3. With suitable diagram, explain the method of pumping in laser. 4. Obtain the bond length of HCl molecule. (Given, $B=10-35\,\text{cm}^{-1}$, $h=6.62\times10^{-34}\,\text{J-s}$, $c=3\times10^{10}\,\text{cm/s}$, $m_1=1.008\,\text{a.m.u.}$, $m_2=35.46\,\text{a.m.u.}$, $N_A=6.024\times10^{23}$) S. Write a short note on Fortrat diagram. -чевр- # V/BOT (viii) 2014 Bond A who and in (5th Semester) BOTANY EIGHTH PAPER (Environmental Biology and Ethnobotany) Full Marks: 55 Time: 2 hours (PART : B-DESCRIPTIVE) (Marks: 35) The figures in the margin indicate full marks for the questions 1. Define environment. Describe in brief different types of climatic factor. 1+6=7 Or What is biogeochemical cycle? Describe nitrogen cycle with a neat diagram. 1+6=7 2. What are non-biodegradable pollutants? Mention their role in biomagnification. 2+5=7 Or Write short notes on the following: 3½+3½=7 - (a) Radioactive waste disposal - (b) The causes of ozone-layer depletion ; G15-350/157a (Turn Over) in by the emester / Commerce / Exam., 2014 ture of lator(s) /157