2014

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Spectroscopy)

Full Marks: 55

Time: 2 hours

(PART : B-DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

1. Derive Rutherford's scattering cross-section formula. Discuss Rutherford's atom model and mention its limitations.

4+3=7

Or

- (a) Explain the different spectroscopic terms.

 Also explain multiplicity of the terms.
- (b) Calculate the two possible orientations of spin vector \vec{s} with respect to magnetic field direction.

G15-250/136a

(Turn Over)

3

Distinguish between normal and anomalous
 Zeeman effects. Use classical ideas to explain
 normal Zeeman effect.

Or

What are X-rays? Explain Bragg's law. X-rays of wavelength 1.392 Å are reflected from the face of an NaCl crystal. The first-order reflection is observed at an angle of 14°. Calculate the lattice spacing. 2+3+2=7

3. Define spontaneous emission and induced emission, and hence derive Einstein's A and B coefficients.

3+4=7

Or

Explain the construction and working of He-Ne laser.

4. Obtain an expression for the allowed energies for a vibrating diatomic molecule treated as a harmonic oscillator. Show that the vibrational spectrum consists of a single band.
4+3=7

Or

(a) Obtain an expression for the rotational energy of a diatomic molecule when considered as a rigid rotator. Explain the isotope effect.

3+2=5

G15-250/136a

(h)	The transition $J = 1 \leftarrow 0$ in HCl occurs at					
(~)	20.68 cm ⁻¹ . Regarding the molecule to					
	be a rigid rotator, calculate the wavelength					
	of the transition $J = 15 \leftarrow 14$.					

2

5. What is Raman effect? Explain it using quantum mechanics. Also compare Raman spectra with infrared spectra.

1+4+2=7

Or

- (a) Discuss rotational fine structure of electronic vibrational transitions.
- (b) State and explain Franck-Condon principle. 2

2014

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Spectroscopy)

(PART : A-OBJECTIVE)

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks: 5)

Put a Tick (✓) mark against the correct answer in the brackets provided: 1×5=5

1. The possible quantum numbers n, l, j and m_j of the outer electron of sodium given by $3^2S_{1/2}$ are

(a)
$$n=2$$
, $l=1$, $j=\pm \frac{1}{2}$, $m_j=\pm \frac{1}{2}$ ()

(b)
$$n = 3$$
, $l = 0$, $j = \frac{1}{2}$, $m_j = \pm \frac{1}{2}$ ()

(c)
$$n=1, l=2, j=\frac{3}{2}, m_j=\pm\frac{3}{2}$$
 ()

(d)
$$n = 0$$
, $l = 3$, $j = \frac{3}{2}$, $m_j = \pm \frac{3}{2}$ ()

	According to Pauli's exclusion princinumber of states with a given princinumber	ple, i ipal (he qua	total ntum
	number n is			8

(a)
$$2n^2$$
 ()

(c)
$$2n^2+1$$
 ()

(d)
$$2n+1$$
 ()

3. An atom initially in the upper energy state E_2 drops to a lower state E_1 by emitting a photon of energy hv. The process is known as

4.	the elec	molecu ctronic (ılar (E _e),	energy vibrati	leve onal	nheimer els can (E_{v}) an magnitu	d rotat	lucu	11100
	(a)	$E_e > E_t$, > E	r	()			
	(b)	$E_{v} > E_{e}$, e > E	r	()			

(c)	$E_r > E_v > E_e$	()

(d)
$$E_r > E_e > E_v$$
 ()

5. If one electron is removed from oxygen molecule, it will be in the highest energy orbital $(\pi_g^* 2p)$. This electron is called

(a)	anti-bonding electron		()	
(b)	bonding electron	()		
(c)	π -bonding electron		()	

SECTION-II

(Marks: 15)

Give short answers of the following questions:

 $3 \times 5 = 15$

1. State and explain Larmor's theorem.

2. Write a short note on Auger effect.

3. With suitable diagram, explain the method of pumping in laser.

4. Obtain the bond length of HCl molecule. (Given, $B=10-35\,\text{cm}^{-1}$, $h=6.62\times10^{-34}\,\text{J-s}$, $c=3\times10^{10}\,\text{cm/s}$, $m_1=1.008\,\text{a.m.u.}$, $m_2=35.46\,\text{a.m.u.}$, $N_A=6.024\times10^{23}$)

S. Write a short note on Fortrat diagram.

-чевр-

V/BOT (viii)

2014 Bond A who and in

(5th Semester)

BOTANY

EIGHTH PAPER

(Environmental Biology and Ethnobotany)

Full Marks: 55

Time: 2 hours

(PART : B-DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

1. Define environment. Describe in brief different types of climatic factor. 1+6=7

Or

What is biogeochemical cycle? Describe nitrogen cycle with a neat diagram. 1+6=7

2. What are non-biodegradable pollutants?

Mention their role in biomagnification. 2+5=7

Or

Write short notes on the following: 3½+3½=7

- (a) Radioactive waste disposal
- (b) The causes of ozone-layer depletion ;

G15-350/157a

(Turn Over)

in by the

emester

/ Commerce /

Exam., 2014

.....

ture of lator(s)

/157