2018
(Pre-CBCS)
(3rd Semester)

ELECTRONICS

THIRD PAPER
(Electronic Devices and Amplifiers)
Full Marks : 55
Time : $2^{1 ⁄ 2}$ hours
(PART : A—OBJECTIVE)
(Marks : 20)
The figures in the margin indicate full marks for the questions

> SECTION—A
> (Marks : 5)

Tick (\checkmark) the correct answer in the brackets provided :
$1 \times 5=5$

1. The drain-source voltage above which drain current becomes constant is known as \qquad voltage.
(a) saturation
()
(b) pinch-off
(c) active
()
(d) cut-off
2. The control element in an SCR is
(a) cathode ()
(b) anode
(d) gate
3. A $p-n$ junction that radiates energy as light instead of heat is called a/an
(a) LED ()
(b) photo-diode
(c) pin diode
(d) Zener diode
4. The maximum overall efficiency of a class-B push-pull amplifier is
(a) 50%
(c) 78.5%

(b) 25%
(d) 85%
5. The common-mode gain is
(a) very high ()
(b) very low ()
(c) always unity ()
(d) unpredictable ()

SECTION-B
(Marks : 15)
Answer any five questions of the following :

1. For an n-channel JFET, $I_{D S S}=8.7 \mathrm{~mA}, V_{p}=-3 \mathrm{~V}$ and $V_{G S}=-1 \mathrm{~V}$. Find I_{D} and g_{m}.
2. Explain 90° phase control of an SCR.
3. Discuss the construction of solar cell with a neat diagram.
4. Write the relation between quality factor and bandwidth of a tuned amplifier. The Q-value of a tuned amplifier is 60 . If the resonant frequency for the amplifier is 1200 kHz , find (a) bandwidth and (b) cut-off frequency.
5. Explain the working of an operational amplifier in inverting configuration.
6. What are the advantages of inserting an intrinsic layer in a $p-n$ junction diode to form a PIN diode?
7. The following readings were obtained experimentally from a JFET :

$V_{G S}$	0 V	0 V	-0.2 V
$V_{D S}$	7 V	15 V	15 V
I_{D}	10 mA	10.25 mA	9.65 mA

Determine (a) a.c. drain resistance, (b) transconductance and (c) amplification factor.
8. Write a short note on UJT relaxation oscillator.

(PART : B—DESCRIPTIVE)

(Marks: 35)
The figures in the margin indicate full marks for the questions

1. (a) Why is JFET called a unipolar transistor? Explain the main parameters of a JFET.
(b) For a certain D-MOSFET, $I_{D S S}=10 \mathrm{~mA}$ and $V_{G S(\text { off })}=-8 \mathrm{~V}$.
(i) Is this an n-channel or a p-channel?
(ii) Calculate I_{D} at $V_{G S}=-3 \mathrm{~V}$.
(iii) Calculate I_{D} at $V_{G S}=+3 \mathrm{~V}$.

OR

2. (a) Describe the construction and working principle of enhancement mode MOSFET and give some applications of MOSFET. $2+2+1=5$
(b) Define the conventional drain current in FET. On what factor does it depend?
$1+1=2$
3. (a) Describe the operation of Silicon Controlled Rectifier (SCR). How will you explain this operation using two-transistor analogy? 3+2=5
(b) What is dynamic resistance of junction diode? Give the condition for linearity of the junction diode.

OR

4. (a) Write the construction and operation of UJT for the cases (i) when emitter is open and (ii) when positive voltage applied to the emitter.
(b) Explain with diagram, the $V-I$ characteristics of $p-n$ junction diode in forward bias and reverse bias.
5. (a) Write down the theory and construction of Light Emitting Diode (LED).
(b) How is population inversion created in semiconductor laser?

OR

6. (a) With a neat diagram, explain the construction and working of a $p-n$ junction photodiode.
(b) Explain how Zener diode can be used as voltage regulator.
7. (a) With a neat diagram, explain the working of single-tuned amplifier. Discuss its frequency response.
(b) Define the crossover distortion in class-B push-pull amplifier.

OR

8. (a) What are power amplifiers? Show that the efficiency of transformer coupled class-A amplifier is 50% in an ideal case.
(b) Mention some special characteristics that distinguish a tuned amplifier from other amplifiers.
9. (a) Derive an expression for the overall gain in an OP-AMP in the case of non-inverting configuration. The non-inverting OP-AMP has $R_{f}=5 \mathrm{k} \Omega$ and $R_{l}=1 \mathrm{k} \Omega$. Calculate the voltage gain.
$4+1=5$
(b) A differential amplifier has an open-circuit voltage gain of 100. The input signals are 3.25 V and 3.15 V . Determine the output voltage.

OR

10. (a) With the help of a circuit diagram, explain the operation of a balanced differential amplifier.
(b) Why is the 'summing point' of the operational amplifier (OP-AMP) called 'virtual ground'?
