ELEC/III/03

2018

(Pre-CBCS)

(3rd Semester)

ELECTRONICS

THIRD PAPER

(Electronic Devices and Amplifiers)

Full Marks: 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(Marks : 20)

The figures in the margin indicate full marks for the questions

SECTION-A

(*Marks* : 5)

Tick (\checkmark) the correct answer in the brackets provided :

1.	The d	rain-source	e voltage	above	which	drain	current	becomes	constant i	S
	known	n as	voltage.							

- (a) saturation
 ()
 (b) pinch-off
 ()

 (c) active
 ()
 (d) cut-off
 ()
- **2.** The control element in an SCR is
 - (a) cathode () (b) anode ()
 - (c) drain () (d) gate ()

3. A p-n junction that radiates energy as light instead of heat is called a/an

(a) LED(b) photo-diode(c)(c) pin diode(c)(d) Zener diode(c)

/227

[Contd.

1×5=5

4. The maximum overall efficiency of a class-B push-pull amplifier is

(a)	50%	()	<i>(b)</i> 25%	()
(c)	78.5%	()	(d) 85%	()

5. The common-mode gain is

(a)	very high	()		(b) very low ()	
(C)	always unity		()	(d) unpredictable	()

SECTION-B

(Marks: 15)

Answer any *five* questions of the following :

- **1.** For an *n*-channel JFET, I_{DSS} 8 7 mA, V_p 3V and V_{GS} 1V. Find I_D and g_m .
- 2. Explain 90° phase control of an SCR.
- 3. Discuss the construction of solar cell with a neat diagram.
- **4.** Write the relation between quality factor and bandwidth of a tuned amplifier. The *Q*-value of a tuned amplifier is 60. If the resonant frequency for the amplifier is 1200 kHz, find *(a)* bandwidth and *(b)* cut-off frequency.
- **5.** Explain the working of an operational amplifier in inverting configuration.
- **6.** What are the advantages of inserting an intrinsic layer in a p-n junction diode to form a PIN diode?
- 7. The following readings were obtained experimentally from a JFET :

V_{GS}	0 V	0 V	-0·2 V
V _{DS}	7 V	15 V	15 V
Ι _D	10 mA	10·25 mA	9∙65 mA

Determine (a) a.c. drain resistance, (b) transconductance and (c) amplification factor.

8. Write a short note on UJT relaxation oscillator.

ELEC/III/03/227

[Contd.

3×5=15

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- (a) Why is JFET called a unipolar transistor? Explain the main parameters of a JFET.
 - (b) For a certain D-MOSFET, I_{DSS} 10 mA and $V_{GS(off)}$ 8 V.
 - (i) Is this an *n*-channel or a *p*-channel?
 - (*ii*) Calculate I_D at V_{GS} 3 V.
 - (iii) Calculate I_D at V_{GS} 3 V.

OR

- **2.** (a) Describe the construction and working principle of enhancement mode MOSFET and give some applications of MOSFET. 2+2+1=5
 - (b) Define the conventional drain current in FET. On what factor does it depend? 1+1=2
- **3.** (a) Describe the operation of Silicon Controlled Rectifier (SCR). How will you explain this operation using two-transistor analogy? 3+2=5
 - (b) What is dynamic resistance of junction diode? Give the condition for linearity of the junction diode. 1+1=2

OR

4. (a) Write the construction and operation of UJT for the cases (i) when emitter is open and (ii) when positive voltage applied to the emitter.

2+2=4

3

- (b) Explain with diagram, the V-I characteristics of p-n junction diode in forward bias and reverse bias.3
- **5.** (*a*) Write down the theory and construction of Light Emitting Diode (LED).

3+2=5

(b) How is population inversion created in semiconductor laser? 2

ELEC/III/03/227

[Contd.

OR

6.	(a)	With a neat diagram, explain the construction and working of a p - n junction photodiode. $2+2=4$
	(b)	Explain how Zener diode can be used as voltage regulator. 3
7.	(a)	With a neat diagram, explain the working of single-tuned amplifier. Discuss its frequency response. 3+2=5
	(b)	Define the crossover distortion in class-B push-pull amplifier. 2
		OR
8.	(a)	What are power amplifiers? Show that the efficiency of transformer coupled class-A amplifier is 50% in an ideal case. 1+4=5
	(b)	Mention some special characteristics that distinguish a tuned amplifier from other amplifiers. 2
9.	(a)	Derive an expression for the overall gain in an OP-AMP in the case of non-inverting configuration. The non-inverting OP-AMP has R_f 5 k and R_l 1k. Calculate the voltage gain. 4+1=5
	(b)	A differential amplifier has an open-circuit voltage gain of 100. The input signals are 3.25 V and 3.15 V. Determine the output voltage. 2
10.	(a)	With the help of a circuit diagram, explain the operation of a balanced differential amplifier. 1+4=5
	(b)	Why is the 'summing point' of the operational amplifier (OP-AMP) called 'virtual ground'? 2

* * *

ELEC/III/03/227

G9—30