2017

(Pre-CBCS)

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

(Revised)

Full Marks :55

Time : $2\frac{1}{2}$ hours

(PART : A – OBJECTIVE) (*Marks* : 20)

> SECTION – I (Marks: 5)

Each question carries 1 mark

Tick (\checkmark)the correct answer in the brackets provided :

1.	The energy gap	betw	een va	lence and co	nduction bands in	ı an in	sulato	r is at	out
	(a) 15 eV	()		(b) 1.5 eV	()		
	(c) 0 eV	()		(d) 0.5 eV	()		
2.	The maximum	efficie	ncy of	a half-wave	rectifier is				
	(a) 50%	()		(b) 81.2%	()		
	(c) 25%	()		(d) 40.6%	()		
3.	The phase diffe (in radian)	erence	e betwe	een the inpu	t signal and outpu	ıt sigr	al in a	a CE a	mplifier is
	(a) π	()		(b) π/2	()		
	(c) 2π	()		(d) 0	()		
4.	In determining	the lo	ad line	e, for $I_C = 0$,	we have				
	(a) $V_{\rm CE} = V_{CB}$		()	(b) $V_{\rm CE} = 0$	()		
	(c) $V_{\rm CE} = V_{CC}$		()	(d) $V_{\rm CC} = 0$	()		
5.	In an R-C coupled transistor amplifier, the mid-frequency ranges between								
	(a) 50 Hz to 20	kHz		()	(b) 20 Hz to	20 kI	Ηz	()
	(c) 50 Hz to 20	0 Hz		()	(d) 20 Hz to	200 H	Hz	()

ELEC/II/02 (R)/308

SECTION – II (Marks : 15) Each question carries 3 marks

(2)

Answer any five questions:

- 1. Write a short note on the effect of biasing on depletion layer of a junction diode.
- 2. What are the important electrical properties of capacitor and inductor in making a filter circuit?
- 3. What do you mean by thermal runaway? How will you avoid it in a transistor?
- 4. Explain in brief the working of a class B push-pull amplifier
- 5. What are the four dimensions of a *h*-parameters of a transistor?
- 6. Write a brief note on the formation of energy band in solids.
- 7. Show that $\beta = \alpha/1 \alpha$, where the symbols have their usual meanings in a transistor.
- 8. Write the steps of construction of d.c. load line.

(PART: B – DESCRIPTIVE) (Marks : 35)

The figures in the margin indicate full marks for the questions

1.	(a) What are intrinsic and extrinsic semiconductors? Briefly explain the formation <i>n</i> -type semiconductor. 2+3					
	(b) Write down some important properties of a semiconductor.	2				
	Or					
	(a) What is the difference between energy level and energy band?	2				
	(b) What do you mean by hole current?	3				
	(c) Explain the capacitive effects of junction diode.	2				
2.	(a) What is a rectifier? Show that the ripple factor of a full-wave rectifier is 0.48 .	+3=4				
	(b) Write a short note on the filter circuits consisting of an inductor.	3				

	(a) Write a short note on the reverse characteristics of a Zener diode with suita	ble
	diagram.	3
	(b) With suitable diagrams, explain the working of a n-filter.	4
3.	(a) Describe with suitable diagram, the transistor static characteristic of CE configuration. Mention its difference with CB characteristics.	3+2=5
	(b) State and explain transistor biasing for normal operation.	2
	Or	
	(a) Define β of a transistor. Show that $I_E = (1 + \beta)I_B$.	1+2=3
	<i>(b)</i> Describe in brief N-P-N transistor. Explain with suitable diagram, the CB configuration of P-N-P transistor.	2+2=4
4.	(a) Differentiate between the following :(i) Voltage gain and current gain(ii) Input resistance and output resistance	2+2=4 nce
	(b) Write in brief power relations for class B amplifier. What is the maximum efficiency of a class A amplifier coupled with a transformer?	overall 2+1=3
	Or	
		•.•

- (a) What is a linear amplifier? Explain quiescent point of a transistor amplifier with suitable diagram showing cut-off and saturation. 1+3=4
- (b) Explain class A amplifier with graphical representation.
- 5. (a) What do you understand by hybrid parameter of a transistor? A transistor used in CE connection has the following set of *h*-parameters when the d.c. operating point is $V_{CE} = 5$ volts and $I_C = 1$ mA :

 $h_{ie} = 1700 \ \Omega, \ h_{re} = 1.3 \times 10^{-4}, \ h_{fe} = 38, \ h_{oe} = 6 \times 10^{-6} \ v$

If the a.c. load r_L seen by the transistor is 2 k Ω , find *(i)* the input impedance, *(ii)* current gain and *(iii)* voltage gain. 1+3=4

(b) With a neat circuit diagram, explain the operation of an R-C coupled transistor amplifier.

Or

- (a) With a suitable diagram, explain the frequency response of an R-C coupled transistor amplifier in the mid-, high-, and low-frequency ranges.
- (b) What are the limitations of *h*-parameters?

3

5

2