2017

(Pre-CBCS)

(1st Semester)

ELECTRONICS

Paper No : EL - 101

(Electronic Measuring Instruments and Circuit Analysis)

Full Marks :55

Time : $2\frac{1}{2}$ hours

(PART : A - OBJECTIVE) (*Marks* : 20)

The figures in the margin indicate full marks for the questions

SECTION – I (Marks: 5)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided for it : $1 \times 5 = 5$

1.	No colour codin	g in a res	istor in	dicates the	e toleran	ce of			
	(a) 5% (()		(b)	10%	()		
	(c) 20% (()		(d)	25%	()		
2.	Working of a tra	unsforme	r essent	ially depen	ids on				
	(a) mutual indu	ctance	() (b)	self-indu	uctance		(
	(c) magnetic circ	cuit	() (d)	number	of turns of	coil	(
3.	In an a.c. circuit, maximum power is consumed in								
	(a) L ()			(b) C	()			
	(c) R ()	1		(d) L-C	()			
4.	Kirchhoff's volta	ige law ag	grees wi	th the prin	nciple of	conservatio	n of		
	(a) charge	()	(b)	energy		()	
	(c) mass	()	(d)	moment	tum	()	
5.	To get the Thevenin's voltage, you have to								
	(a) short circuit	the load	resistor	•	()			
	(b) open the load	d resistor			()			
	(c) short circuit	the load	load voltage source ()						
	(d) open the volt	tage sour	ce		, ()			
	· / -	0			•	,			

)

SECTION – II (*Marks* : 15)

(2)

Answer *any* **five** questions:

- 1. Discuss the factors that control the capacitance of a capacitor.
- 2. Define Transducer. What is the difference between passive and active transducers?
- 3. Briefly explain the working principle of a choke coil.
- 4. State and explain Kirchhoff's current and voltage law.
- 5. State and prove the reciprocity theorem.
- 6. Describe how a band-pass filter works.
- 7. Describe the relation between current and voltage in an a.c. circuit having inductance *L* and capacitance *C* in series.
- 8. Differentiate between unilateral and bilateral elements giving one example each.

(PART: B – DESCRIPTIVE) (Marks : 35)

The figures in the margin indicate full marks for the questions

- 1. *(a)* What do you mean by power rating of a resistor? Describe briefly the preparation of wire-wound resistor and carbon composition resistor. 1+2+2=5
 - (b) A varactor diode has a capacitance of 16 pF when the reverse bias voltage applied across it is 3 V. Determine the capacitance if the diode bias voltage is 6V.

Or

- (c) Describe the construction of ceramic capacitor. Why is ceramic capacitor preferred over mica or paper capacitor? 2+2=4
- (d) How is coefficient of coupling related to mutual and self-inductance of two coils? What is its significance? 3
- 2. (a) Describe in detail the construction and working principle of a transformer.
 Mention two uses of a transformer.
 3+2=5
 - (b) What are thermistor and strain gauge?

2

2

	Describe the construction and principle of working of cathode-ray oscillosc	ope
	(CRO).	3+4=7
3.	(a) Derive an expression for power consumed in an a.c. circuit.	5
	(b) What do you mean by sharpness of resonance in resonant circuit?	2
	Or	
	(c) What is quality factor of a resonant circuit? Derive the voltage and current relations in an a.c. circuit containing <i>R</i> and <i>C</i> .	1+3=4
	(d) Define filter. Differentiate between high-pass filter and low-pass filter.	1+2=3
4.	(a) What are active and passive elements?	2
	(b) Discuss the current and voltage division law.	5
	Or	
	(c) State and explain ladder method of network analysis.	4
	(d) Define branch and node. Briefly explain nodal analysis.	1+2=3
5.	(a) State and explain superposition theorem.	1+3=4
	(b) Show that the Norton's equivalent circuit can be found from the Thevenin's	

(b) Show that the Norton's equivalent circuit can be found from the Thevenin's equivalent circuit.

Or

- (c) State Thevenin's theorem and prove it in case of a two-terminal network.
- (d) Calculate the value of load resistance R_L to which maximum power may be transferred from the circuit below. Also find the maximum power transferred:

2+1=3

3
